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a b s t r a c t

We have studied the dynamics of non-colloidal short fiber suspensions in bounded shear flow using the
Stokesian dynamics simulation. Such particles make up the microstructure of many suspensions for
which the macroscopic dynamics are not well understood. The effect of wall on the fiber dynamics is
the main focus of this work. For a single fiber undergoing simple shear flow between plane parallel walls
the period of rotation was compared with the Jeffrey’s orbit. A fiber placed close to the wall shows sig-
nificant deviation from Jeffrey’s orbit. The fiber moving near a solid wall in bounded shear flow follows a
pole-vaulting motion, and its centroid location from the wall is also periodic. Simulations were also car-
ried out to study the effect of fiber–fiber interactions on the viscosity of concentrated suspensions.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Many industrial processes involve flow of suspensions of vari-
ous sizes and shapes of particles. It is well understood that the
properties of final product depends on the flow characteristics
and rheology of suspensions. The particles used in these suspen-
sions can be spherical, elongated or any arbitrary size. For elon-
gated particles the mechanical properties of the final product
depends on orientation and concentration distribution of the parti-
cles. Jeffery (1922) theoretically solved the motion of a single ellip-
soidal particle undergoing simple shear flow in a Newtonian fluid.
Subsequently, there have been several studies to determine the
rheology of fiber suspensions (Mackaplow and Shaqfeh, 1996;
Yamamoto and Matsuoka, 1994; Powell, 1991). However, most
of zthese studies are limited to infinitely dilute or semi-dilute
concentrations.

The study of the rheology of concentrated suspensions, in par-
ticular, their effective viscosity and its concentration dependence,
is of general interest in material processing technology. In this
study, we are concerned with numerical simulations of the suspen-
sion of non-spherical particles comprising of rigid spheres joined
together. The dynamics of these particles which form anisometric
particles are very different from the spherical particles. Anisomet-
ric particles have at least one distinguished direction along which
their size is larger or smaller than perpendicular to it and the shape
of the geometry is quantified by the aspect ratio. The shape of the
particles has a large influence on the macroscopic properties of the
008 Published by Elsevier Ltd. All r
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suspensions and when the suspended particles are slender their
orientations strongly affect the rheological properties of the flow.
It is well known that the disturbance caused by the immersed par-
ticle decays as the distance from it increases, but the particle’s mo-
tion is affected by other particles or walls in close proximity. Jeffery
(1922) first developed the theory to describe the viscosity of dilute
suspension of rigid ellipsoidal particles. Jeffery’s equation for angu-
lar velocity of an ellipsoid in simple shear flow is

_h ¼ �
_c

r2
e þ 1

ðr2
e sin2 hþ cos2 hÞ ð1Þ

Here, re is the aspect ratio and h is the angle of the ellipsoidal par-
ticle with respect to the flow direction. The dot represents the
derivative with respect to time. It is quite clear from this expression
that the angular velocity is maximum when h = p/2, that is the par-
ticle is oriented perpendicular to the flow, and it is minimum when
h = 0, that is the particle has aligned itself parallel to the flow. This
equation when integrated, gives the dependence of h on time as

tan h ¼ 1
re

tan � _ct
re

r2
e þ 1

þ tan�1ðre tan h0Þ
� �

ð2Þ

where h0 is the initial value of h. The period of rotation for applied
shear rate c is given by

T ¼ 2p
_c

r2
e þ 1

re

� �
ð3Þ

Arp and Mason (1977) have shown that Jeffrey’s result will not
hold due to particle–particle interactions if the dilute limit is ex-
ceeded. As the concentration of particles in the suspension in-
creases, the interaction of the particles with other particles and
with the walls of the container leads to other induced orientations.
ights reserved.
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Moreover, for a concentrated suspension, the instantaneous orien-
tation of each particle is often unknown. Hence it is important to
understand the dynamics of such particles in bounded flows and
where particle–particle and particle–wall hydrodynamic interac-
tions could be correctly accounted.

The numerical simulations to study the dynamics of anisomet-
ric particles employ regular particle shapes such as ellipsoids or
spheroids. For elongated particles slender-body theory has been
used in many studies. Another approach followed for the elongated
particles is to treat it as spheres of equal size connected together in
a chain like fashion. Yamamoto and Matsuoka (1995) presented a
new method known as particle simulation method (PSM) to simu-
late the motion of fiber suspensions in shear flow at low Reynolds
numbers without Brownian motion. They considered hydrody-
namic interaction among fibers which are modeled by arrays of
spheres present in a particle simulation cell wherein the motion
of each constituent sphere of a fiber, which is dispersed into a unit
cell with periodic boundaries, is followed to predict the micro-
structure and the rheological properties. They decomposed the
hydrodynamic interaction into two parts, viz. intra- and inter-fiber
ones. For Intra-fibers, they solved the many-body problem by cal-
culating the mobility matrix for each fiber and this information
was used to calculate the hydrodynamic force and torque exerted
on each sphere. In the case of inter-fibers, they considered only
the near-field lubrication force between spheres of one fiber and
another. They observed an overshoot of suspension viscosity at
the early stage for rigid fiber suspensions, but not for flexible ones.
This was attributed to the transient change of the microstructure
from the flow-directional orientation to the planar orientation of
rigid fibers. Switzer and Klingenberg (2003) employed a particle-
level simulation technique to investigate the rheology of non-
Brownian, flexible fiber suspensions in simple shear flow. There
model incorporates a variety of realistic features including fiber
flexibility, fiber deformation, and frictional contacts. They found
that the viscosity of fiber suspensions is strongly influenced by
the fiber equilibrium shape, inter-fiber friction, and fiber stiffness.
It was also found that the viscosity of the suspension increases as
the fiber curvature, the coefficient of friction, or the fiber stiffness
is increased. Pozrikidis (2005) investigated the significance of the
particle aspect ratio on the statistics of the particle orientation
and effective viscosity of a non-dilute suspension in simple shear
flow using dynamic simulation. Numerical simulation based on
an improved boundary-element method for particulate Stokes flow
was used and an iterative procedure was adopted for particle con-
tour traction and particle linear and angular velocities, based on
particle-cloud clustering. Their results show the transition from a
nearly-ordered state to a random configuration because of particle
interactions and the particle eccentricity reduces the effective vis-
cosity of suspension. Fan et al. (1998) used a numerical method to
simulate fiber suspension in shear flow which takes into account
short range interaction via lubrication forces and long range inter-
action via slender-body approximation, together with an appropri-
ate Ewald summation technique. The macroscopic properties of
suspension like Folgar–Tucker diffusion constant, the structure
functions, and the reduced viscosity were analyzed. It is found that
in the semi-concentrated to concentrated regime, the fibers no
longer follow Jeffery’s orbit and align mostly in shear direction.
Claeys and Brady (1993) studied the hydrodynamic transport prop-
erties for the dispersions of prolate spheroids using the Stokesian
dynamics numerical simulations. They examined the effect of con-
centration on hydrodynamic transport properties like sedimenta-
tion rate, hindered diffusivity and the rheological behavior of
face-centered lattices. They also investigated the effect on micro-
structure of the dispersion by considering different arrangements
of parallel ellipsoids. They found that the concentration depen-
dence of the sedimentation rate reveals cooperative viscous
interactions enhancing the collective rotational diffusion coeffi-
cient. While in the case of fibrous media the hindered diffusivities
was found to decrease monotonically with density. Mackaplow
and Shaqfeh (1996) employed a numerical technique to study
the rheological properties of suspensions of rigid, non-Brownian
slender fibers at zero Reynolds number based on the slender-body
theory taking into account the inter-fiber hydrodynamic interac-
tions. They studied suspension properties like extensional and
shear viscosity for a variety of fiber aspect ratios and orientation
distributions in the dilute and semi-dilute concentration regime.
They found that the fiber–fiber interactions begin to enhance the
stress in the suspension and it undergoes a transition to the
semi-dilute regime well predicted by dilute theories. They also ob-
served that in the semi-dilute regime, the dimensionless fiber dis-
turbance screening length is only a function of suspension volume
fraction and it was approximately the same for both aligned and
isotropic suspensions, even though the latter contain many closer
fiber–fiber interactions than the former. They found that the
semi-dilute suspension screening length is independent of the fi-
ber orientation distribution in the suspension.

There are few studies on wall bounded flows which focus on
cross-streamline migration of fibers. Schiek and Shaqfeh (1997)
have numerically investigated flow between two infinite, parallel
plates separated by a distance comparable to the length of a sus-
pended fibers and predicted the migration of fibers from region
of low shear rate to high shear rate. Nitsche and Hinch (1997) pre-
dicted cross-stream migration of rigid rods undergoing diffusion
and advection in parabolic flow between flat plates and observed
that the fibers should migrate towards the wall. Gavze and Shapiro
(1997) solved the boundary integral equation of Stokes flow to
compute the hydrodynamic forces and velocities of spheroidal par-
ticles in a simple shear flow near a solid wall. The effect of wall is to
create a non-zero velocity component in the normal direction to
the wall and hence a spheroid moving in a shear flow near the wall
will perform an oscillatory motion towards and away from the
wall. They observed that the effect of wall decreases with increas-
ing particle non-sphericity. Moses et al. (2001) conducted planar
shear flow experiment to study the effect of boundaries on the fi-
ber motion. They verified the motion of the fibers with the Jeffery’s
orbit for ellipsoidal particle. They observed that for distances less
than a fiber length and greater than a fiber diameter from the wall,
the fiber experiences an increased rate of rotation. They found that
an increased effective shear rate can be used to match the fiber’s
orbit with the Jeffery’s orbit. It was also found that the effective
shear rate increased logarithmically with decrease in separation
distance. The wall effect was found to be greater for longer aspect
ratio fibers and fibers oriented perpendicular to the wall rotated
faster than the one parallel to the wall at the same distance. Fibers
which aligned with flow direction ceased to rotate. Holm and
Soderberg (2007) conducted experiments to study the influence
of shear close to a solid boundary on the fiber orientation in sus-
pensions with different aspect ratios and concentrations.

Our aim in this work is to study the effect of wall on the dynam-
ics of short fiber particles sheared between plane parallel walls
using the Stokesian dynamics simulation (Brady and Bossis,
1988). The extension of Stokesian dynamics by Claeys and Brady
(1993) for spheroidal particles incorporates increased mathemati-
cal complexities. Moreover, Mackaplow and Shaqfeh (1996) have
argued that with increasing aspect ratio, higher order terms in
multipole expansion becomes increasingly important but they
are not included in the Stokesian dynamics. The method we have
adopted uses spherical particles and hence present level of accu-
racy which includes two term expansion is accurate enough to cap-
ture near-field and far-field hydrodynamic interactions. In our
simulations a rigid fiber particle consists of spherical particles held
together by inter-particle forces. This enabled us to use the regular



C. Jayageeth et al. / International Journal of Multiphase Flow 35 (2009) 261–269 263
Stokesian dynamics simulation for bounded shear flows which ac-
count for accurate particle–particle and particle–wall hydrody-
namic interactions. In Section 2 we present our simulation
method. The results in Section 3 provide detailed analysis of the
trajectory of a single fiber moving near a plane wall in simple shear
flow, the forces and torque the wall experiences due to fiber mo-
tion and the viscosity of suspension determined from the shear
force on the wall.

2. Stokesian dynamics simulation method

In our earlier work (Singh and Nott, 2000) we have developed
simulation method for wall bounded flows where the detailed
methodology for bounded simulation can be found. The simulation
method essentially uses the method of Nott and Brady (1994) to
compute the far-field mobility interaction of particle–wall by con-
sidering the wall to be chain of particles. Exact sphere–wall inter-
action is used for lubrication interaction between sphere and wall
in the resistance matrix (Durlofsky and Brady, 1989). Fig. 1 shows
the simulation cell used in the present study to carry out dynamic
simulation for bounded flow of chain of rigid particles. In order to
simulate bounded plane shear, the suspension is restrained be-
tween two plane parallel walls translating relative to each other
at a constant speed. This cell cannot, however, be replicated peri-
odically in the y-direction, a constraint required for the Ewald
summation in the far-field mobility interactions. Therefore, we
have introduced a layer of fluid below the lower wall. When this
cell comprising the layer of suspension restrained between the
two walls and the layer of pure fluid, is replicated periodically in
all directions, a negative shear rate is imposed on the suspension
and a positive shear rate on the layer of fluid.

The velocities of the walls are fixed and the forces on them are
determined while the forces on the particles are fixed and their
velocities are to be determined from

RSS
FU � ðU

S � huiÞ þ RSS
FU � ðU

S � huiÞ ¼ FS ð4Þ

where the superscripts s and w on the velocities and forces indicate
sphere and wall quantities, and the superscripts ss and sw on the
Fig. 1. A simulation cell showing the bounded shear flow of short fiber particles.
resistances (RFU) indicate sphere–sphere and sphere–wall interac-
tions, respectively. Similarly the forces on the walls are given by

RWS
FU � ðU

S � huiÞ þ RWW
FU � ðUW � huiÞ ¼ FW ð5Þ

The dynamics of the spheres and walls is determined, once the
external force is specified by

Fhyd þ Fext ¼ 0 ð6Þ

In our simulations we impose inter-particle repulsive interaction
between the particles, whose form is same as in the previous Stoke-
sian dynamics simulations (Dratler and Schowalter, 1996; Nott and
Brady, 1994)

Fab ¼ F0
se�se

1� e�s�
eab ð7Þ

where Fab is the force exerted by sphere b on sphere a. The param-
eters s and F0 specify the range of the force and its magnitude,
respectively and e is the separation between the surfaces. In order
to simulate the rigid fibers which are made of spherical particles
joined together, we have implemented the inter-particle forces in
such a way that the spheres of a particle are always attached,
though the whole fiber is free to translate and rotate. To do this
we have considered attractive force between two spheres of a fiber
particle if their velocities are in opposite directions but repulsive
when their velocities are such that they would cause to move to-
wards each other. For spheres of different fiber particle the form
of inter-particle forces remain always repulsive as in the above
equation. To restrict the rotation of individual particles of a fiber
we also added restoring torque in the next time step if the angular
velocity of the sphere deviated from zero. The value of the restoring
torque was equal to the torque experienced by the individual
sphere of a fiber in the previous time step. However, due to finite
time step taken in the simulations there was small deviations and
misalignment of particles. In order to avoid this we used correction
scheme at the end of each time step. As per the scheme the correc-
tion is made only when the constituent spheres of the fibers deviate
from straight line joining their centre. Based on the initial position
of each constituent sphere the slope for each adjoining pair of
spheres is calculated and compared for any deviation. If the slopes
for all the adjoining spheres are not equal then based on the first
and last sphere we calculate the required slope for positioning the
rest of the spheres. Once the slope is known we position each
sphere based on the position of the first sphere so that the cen-
tre-to-centre separation between two adjacent spheres is always
2a.

Once U is known by solving Eq. (4), the positions (XS) of the par-
ticles are determined by time integration of

dXS
i

dt
¼ Ui ð8Þ

Since the initial configuration XS of the particles is known, the above
equation upon integration determines the particle positions at the
next time step. From the forces on the walls, the shear stress and
hence the viscosity of suspension is easily determined

rxy ¼
FW

x

AW
ð9Þ

where Fw
x is the average x-component of the force on the wall and

AW is the total wall area for either wall. All the stresses are scaled
by the shear stress gc, where g is fluid viscosity and c is the shear
rate

c ¼ 2U
H

ð10Þ

Here, U is the speed of the wall and H is the channel width. In
the mobility and resistance matrices, the components relating
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translational velocities to forces are scaled by 6pga and those relat-
ing angular velocities to torque or stresslets by 6pga3. In the simu-
lations all distances are scaled by the particle radius a, the velocity
by wall velocity U and time is scaled by a/U. The results presented in
the following sections are in dimensionless units. The simulations
carried out are for monolayer system, i.e. a fiber particle is only al-
lowed to translate in x–y plane and rotate about z-axis. Hence we
have studied the orientation of the fiber only about z-axis. This
restriction of orientation in a single plane in monolayer simulations
simplifies the problem and reduces the computational complexities
without compromising on our objective of studying the wall effect
on fiber dynamics.

3. Results

To validate the simulation method, we first studied the dynam-
ics of a single rigid fiber of different aspect ratios in bounded shear
flow. The motion of a single fiber was analyzed and its orbit was
compared with the Jeffery’s orbit for an ellipsoidal particle of
equivalent aspect ratio. Simulations were carried out by placing
the fiber at different initial locations from the wall. We analyzed
the trace of fiber centroid for different aspect ratio fibers to verify
the pole-vaulting behavior of the fiber close to the wall. Finally
the relative viscosity was compared for fiber and spherical
suspensions.

3.1. Trajectory of a single particle

Fig. 2 shows the schematic of a fiber placed between two plane
parallel walls moving with equal and opposite velocities to pro-
duce a simple shear flow. Chain of spheres connected together
were placed perpendicular to the flow direction and positioned be-
tween the two walls. The location and orientation of each fiber
with time was computed.

Ideally, for unbounded shear flow of fiber the time-period of
rotation should match well with the Jeffery’s orbit. This was veri-
fied by keeping the distance of separation between the walls very
large. When the fiber is located close to the wall there is significant
deviations in the time-period from the Jeffrey’s orbit (Fig. 3). It is to
be noted that the Jeffrey’s result is valid for ellipsoidal particle in
unbounded shear flow. Bretherton (1962) has shown that the mo-
tion of a cylindrical rod was equivalent to that of an ellipsoidal par-
ticle of an equivalent aspect ratio instead of the aspect ratio of the
cylinder. We have used the semi-empirical relation for the equiva-
lent ratio given by Harris and Pitman (1975) to make comparison
with the Jeffrey’s orbit

re ¼ 1:14a0:844
r ð11Þ

In the above expression, ar is the true aspect ratio of any particle
with fore-aft symmetry and for our case, ar = Nfib, where Nfib is
the total number of spherical particles in a single fiber.
Fig. 2. A single fiber of length 2l sheared between two plane parallel walls whose
centroid is located at a distance of L from the wall.
The simulation results show that the deviation in the orbit of
rotation of a fiber close to wall increases as its distance from wall
decreases. This departure from the Jeffery’s orbit can be attributed
to the effect of wall on fiber motion. When the fiber is close to the
wall it tends to orient in the flow direction parallel to the wall. Far
away from the wall the fiber experiences less wall effect. Conse-
quently, it takes less time to complete one orbit rotation. The
time-period is found to increase with aspect ratio. Also we observe
that for a given separation distance relative to the wall, the fiber
orbit moves further away from Jeffery’s orbit as the aspect ratio
is increased. This is because; the higher aspect ratio fiber spends
longer time aligning parallel to the flow direction. Small discrepan-
cies even at large distance could be due to the fact that the equiv-
alent aspect ratio taken was for cylindrical fiber which had blunt
end whereas the fibers in our simulation has rounded ends.

From the comparison of time-period for different aspect ratios
(Fig. 4) it is clear that there is an apparent increase in the time-per-
iod when the fiber is close to the wall (L/2l < 1). As the relative dis-
tance from the wall i.e. L/2l increases, the time-period is found to
be very close to Jeffery’s orbit. In all our simulations, we have con-
sidered the wall to be a plane one with proper lubrication force in-
cluded when the particle is close to the wall. Also, we have kept the
shear rate constant for all simulation runs. There are very few
works related to the study of boundary effects on the orientation
and rheological properties of fiber suspensions. Moses et al.
(2001) have experimentally studied the effect of wall on the mo-
tion of single fiber of different aspect ratios and have found that
the fiber experiences enhanced shear and increased rate of rotation
close to the wall. Also they observed that higher aspect ratio fibers
rotated faster near the wall than those with lower aspect ratio fi-
bers. They used a translational model to justify that a fiber oriented
perpendicular to the wall experiences a higher effective shear rate
than a fiber oriented parallel to the wall at the same separation
distance.

In Fig. 5, we have shown the variation of the location of the
centroid of a fiber with time. Stover and Cohen (1990) experimen-
tally studied the fiber motion in a plane Poiseuille flow and
observed that the fibers aligned with the flow direction and with-
in less than half a fiber’s length from the wall, remained there
indefinitely. They also reported that fibers in the near wall region
performed a motion which could be described as pole-vaulting
and centroid of the fiber moved away from the wall periodically.
Our results for the bounded shear flow are in support with the
findings of Stover & Cohen. The centroid of the fiber shows some
periodic undulations when it is close to the wall. The undulations
reduce far away from the wall. In the case of fiber of aspect ratio
ar = 2 (Fig. 5a) we see very little variation in the position of the
centroid for separation from wall, L/2l > 1. When the fiber is close
to the wall (L/2l = 0.75), then the centroid shows small undula-
tions in its position. In the case of fiber of aspect ratio ar = 4
(Fig. 5b), centroid remains at the same lateral position when it
is far away from the wall (L/2l = 2.5), but shows periodic undula-
tions as the separation from the wall is reduced (L/2l = 0.625). The
undulation of fiber centroid is more apparent for higher aspect ra-
tio fibers. For fiber of aspect ratio, ar = 6 (Fig. 5c) we see that the
centroid shows less movement from its initial position when L/
2l = 1.667, but close to the wall (L/2l = 0.667) the motion of cen-
troid shows clear offset from its mean position. For ar = 8
(Fig. 5d) we see clear periodic motion of the fiber centroid for
L/2l = 0.625 and L/2l = 0.75. Thus it can be concluded that as the
relative separation distance from the wall is increased or when
the fiber is more than a fiber length away from the wall then
the effect of wall is less. For distances less than a fiber diameter
the wall effect becomes more pronounced. Higher aspect ratio fi-
ber takes longer time to complete one rotation than the lower as-
pect ratio fibers for the same relative separation distance from the



Fig. 3. Trajectory of a single fiber near a plane wall for different aspect ratios (a) ar = 2, (b) ar = 4, (c) ar = 6 (d) and ar = 8.

Fig. 4. Comparison between simulated and theoretical periods (Jeffrey’s orbit) of
rotation of a rigid fiber for different centroid location from the wall as a function of
aspect ratio.
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wall. Stover & Cohen have argued that the non-hydrodynamic
interaction between the fiber and the wall causes the pole-vault-
ing motion. In our simulations there were no forces of the kind
shown in Eq. (7) employed between the particle and wall but still
we are able to capture the motion observed experimentally. It ap-
pears that the bumpy wall formulation in mobility matrix is not
over simplification but represents the non-smooth nature of sur-
faces present in real situations. It is this rough wall which could
be responsible of any non-hydrodynamic effects. Another impor-
tant information which can be gathered from Fig. 5d is that
observing the period of oscillation of the centroid position we
can further confirm the observations in Fig. 3 that as the fiber
moves away from the wall its time-period of rotation decreases.
We would also like to point out that in Fig. 5b and 5d at some
times the centroid position is slightly higher than the minima ex-
pected. This occurs at the time when the fiber starts crossing the
periodic boundary in the flow direction. The periodic boundary is
implemented such that if a particle of fiber crosses right boundary
of the cell it enters from the left boundary but at the same
y-location thus restricting y-positioning due to any lift forces.
For such particle if the rotation was bringing the centroid down-
ward the adjustment in the periodic position would cause it to
move slightly upward due to correction scheme as explained in
Section 2. This aberration can be removed when the cell length
in the flow direction is taken very large so that several rotations
are complete within one periodic cell length but this would invite
more computational cost. The use of very small time step is



Fig. 5. Time trace of the centroid of a single rigid fiber near a plane wall for various location of its centroid from the wall. The aspect ratios of the fibers in the figures are
(a) ar = 2, (b) ar = 4, (c) ar = 6 and (d) ar = 8.

Fig. 6. Lift force on the wall (Fy) versus orientation angle (h) for rigid fibers of
various aspect ratios.
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another way to remove this noise but again at the increased com-
putational cost.

3.2. Force and torque on the wall due to fiber motion

Periodic rotation of a fiber close to a plane wall gives rise to
force and torque on the wall which also shows periodic variations.
We observe from Fig. 6 that the normal force values though small,
are more for high aspect ratio fibers as compared to low aspect ra-
tio fibers for the same initial centroid location from the wall. The
lift force (Fy) is the least when the fiber is aligned parallel or per-
pendicular to the wall. The maxima is observed at an orientation
of h = 60� where the asymmetry of the flow field near the particle
is the largest. In Fig. 6 the angle for the maximum value of Fy de-
pends slightly on the aspect ratio but the difference is small. The
maximum for higher aspect ratio fiber is observed to be at an angle
slightly less than 60�. This could be due to the effect of other wall
on the fiber rotation. The dimensionless gap width in all the simu-
lations was taken as 40. For low aspect ratio fibers placed close to
one wall, the effect of other wall would be small but for higher as-
pect ratio it may have slight influence on the fiber motion and this
may be the cause of difference unless we keep the gap width much
larger. The effect of aspect ratio and relative separation distance
from the wall on torque as a function of fiber orientation angle is
given in Fig. 7. The maxima and minima explained here are in
context with the magnitude of the torque on the wall which is neg-
ative in this case for most part of the orientation angle. The torque



Fig. 7. Torque on the wall (Tz) versus orientation angle (h) for rigid fibers of various
aspect ratios.
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on the particle will be equal and opposite of that on the wall. We
observe that the maximum in the magnitude of the torque is ob-
served at 45� whereas the minimum is expected at 0� and 90�.
When the fiber is aligned parallel to the wall (h = 0�), it offers min-
imum resistance and hence the torque is also minimum. For the
upright position of the fiber (h = 90�), the effect of wall on the flow
near a fiber in such a position is to slow down the fluid motion over
the particle edge facing the wall thus reduced viscous friction and
torque on the wall. The maximum is expected at the intermediate
position of h = 45�. For low aspect ratio fibers (ar = 2, 4) the torque
value is indeed close to zero at 0� and 90� but for aspect ratio 6 and
8 the torque value is small but slightly positive. This could be
attributed to the presence of the other wall on the fiber motion
as explained above. The shear force (Fx) gives the measure of vis-
cosity of suspension and its dependence on orientation angle is dis-
cussed in the next section.

3.3. Viscosity of short fiber suspensions

Variation of relative viscosity as a function of time for differ-
ent aspect ratio fibers was also analyzed. First we have analyzed
the system of infinitely dilute suspension. For this case a single
particle was sheared between plane parallel walls. Since the sim-
ulation employs periodic boundary condition, even a single fiber
particle in the simulation cell is equivalent to a system of per-
fectly ordered but very dilute suspension. In such system each
particle executes periodic rotation with varying angular velocity
over the time-period. In Fig. 8a the viscosity value is plotted
against the fiber orientation angle. It can be observed that the
viscosity shows minima when the fiber is oriented either parallel
or perpendicular to the wall. When the orientation is around 45�
the viscosity value shows maxima. When the fiber is aligned par-
allel to the wall it offers minimum resistance. The effect of wall
on fiber motion is such that when the fiber is parallel it slows
down the flow in the gap between the particle and the wall
and hence reduces the viscous friction. On the other hand when
the particle is in an upright position (perpendicular to the flow
and wall) it experiences a torque which stems from the flow
speedup around its surface. The effect of wall on the flow near
a fiber in such a position is to slow down the fluid motion over
the particle edge facing the wall. This causes the reduction of vis-
cous drag force on the wall and hence the reduced viscosity of
suspension. The maximum value of viscosity is observed at the
intermediate position of h = 45�. This tendency is also predicted
by Jeffrey’s equation for ellipsoidal particles. It can be noticed
that the increase in viscosity is mainly caused by the transla-
tional friction force between particle and fluid, and the contribu-
tion of rotational frictional torque is minimum. Fig. 8b shows the
time trace of viscosity value. From this we can infer that the ef-
fect of fiber–fiber interaction is less in infinitely dilute fiber sus-
pension and fiber moves periodically about its relative position
showing a dominant frequency and a corresponding time-period
of rotation. The effect of fiber–fiber interaction becomes domi-
nant only at moderately higher concentrations. It can be ob-
served that a fiber has minimum angular velocity when it is
aligned to the flow direction and hence it spends more time
about the orientation angle 0�. As soon as the fiber reaches 45�,
it quickly rotates to perpendicular position (90�) at which its
angular velocity is maximum. We can also notice that the relative
suspension viscosity is close to the pure Newtonian fluid value in
accordance with the Einstein’s formula for relative suspension
viscosity for infinitely dilute suspension of spherical particles.
We have also analyzed the power spectrum of the viscosity data
for dilute and concentrated suspension (not shown here). For
infinitely dilute system the peak value correspond to the time-
period of rotation. When the particle fraction increases fiber–fi-
ber interaction destroys the periodic orbits and the power spec-
trum shows peaks of various frequencies. On the other hand as
particle interactions become much higher, the particles are more
likely to be oriented in the direction of the shear flow rather than
in the normal direction (Pozrikidis, 2005).

Fig. 9 shows the time trace of relative viscosity of concentrated
suspensions at various areal fractions. The mean area fraction is
defined as

/ ¼ NIpa2

HLx
ð12Þ

where NI is the total number of interior spheres (excluding the wall
particles) in the simulation cell and Lx is the cell length in x-direc-
tion. From the Fig. 9 we observe that for dilute concentrations the
peaks in the viscosity values occur at regular intervals indicating
that the periodicity is preserved. At higher concentration this peri-
odicity is destroyed due to fiber–fiber interactions and we observe
irregular peaks.

At higher concentrations the fiber viscosity is initially higher
due to randomly dispersed fibers but decreases later as the parti-
cles align towards the shearing plane. It was found that the vari-
ance of relative viscosity increases with areal fraction. Also the
variance of relative viscosity for fiber suspension of ar = 4 is greater
than that of fiber suspension of ar = 2.

Fig. 10 presents a comparison of the relative viscosity of sus-
pension of spherical particles and rigid fibers of aspect ratio 2
and 4. Since our simulations are for 2-D flow the suspension
microstructure has only orientation in velocity–velocity gradient
plane. Though this appears to be highly restrictive, such micro-
structures are realized in film flow and thin channel flow. We
observe that at low and moderate concentrations the fiber sus-
pension viscosity is relatively larger than the spherical particles.
Given the particle areal fraction, the relative suspension viscosity
increases as the particles become more elongated, over a broad
range of areal fractions. It is apparent that for low aspect ratio
fibers in the dilute to semi-concentrated regime, the volume
fraction influences the relative viscosity primarily, and the effect
of aspect ratio being secondary. We also observe that at higher
fraction, the fibers are more aligned and hence the effect of
aspect ratio on viscosity diminishes. Our results are in agree-
ment with the observations of Claeys and Brady (1993) but in
contrast with the numerical simulations of Pozrikidis (2005).



Fig. 8. (a) Variation of viscosity with orientation angle. (b) Time trace of relative viscosity of infinitely dilute suspension. The fiber aspect ratio ar was 4 and the areal fraction
was 0.002 in this simulation. The values of repulsive force parameters, F0 and s were taken as 0.01 and 100.

Fig. 9. Time trace of relative viscosity of concentrated suspensions at various areal fractions. The aspect ratio in the figures are (a) ar = 2, (b) ar = 4. The other parameters were
same as in Fig. 8.

Fig. 10. Plot of relative suspension viscosity versus particle areal fractions for
spherical and rigid fiber suspension of aspect ratio 2 and 4.
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They observed that the viscosity of isotropic dispersion rapidly
increases as the particle aspect ratio is increased. The disagree-
ment could be due to the fact that their simulations take an ini-
tially ordered suspension which evolves to random orientations.
In our simulations we have taken random initial configuration of
the fibers. The increase in the viscosity with aspect ratio has
been argued in many literatures. Arp and Mason (1977) have
shown that the spin of a sphere close to a boundary is always
greater than that of elongated particle. At low and moderate
concentration the spherical suspension would offer less resis-
tance to the boundary for this reason. On the other hand a fiber
would be restrained to spin freely due to presence of other fiber
in concentrated suspension and hence the higher viscosity. Gav-
ze and Shapiro (1997) have numerically studied the motion of a
fiber near a plane wall using boundary integral method and ob-
served that the rotational-translational coupling is affected by
the wall. They also found that the wall retards the fiber motion
and fiber close to the wall had longer periods between rotations.
These factors contribute to higher viscosity observed with sus-
pension of elongated particles.
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4. Conclusion

We have performed Stokesian dynamics simulations to study
the dynamics of rigid non-Brownian fibers in bounded shear flow
between plane parallel walls. The effect of relative separation from
the wall on the motion of single fiber of equivalent aspect ratio was
studied by comparing the fiber orbit with the Jeffery’s orbit. When
the relative separation distance from the wall is large, the fiber or-
bit is closer to the Jeffery’s orbit, which indicates that the simula-
tion method captures the dynamics of rodlike particles. We
found that the time-period of rotation considerably increases as
the fiber is close to the wall and the fiber spends longer time
aligned parallel to the flow direction. The time-period for rotation
is found to increase with aspect ratio. Presence of wall creates a
velocity component normal to the wall and the fiber performs peri-
odic motion towards and away from the wall. This pole-vaulting
motion is more apparent for higher aspect ratio fibers placed close
to the wall. The force and torque on the wall is strongly influenced
by the fiber orientation. The wall effects are more pronounced for
higher aspect ratio fibers. We have also computed the viscosity of
short fiber suspensions from the knowledge of wall shear stresses.
For infinitely dilute system the viscosity value shows periodic fluc-
tuations which become irregular at higher concentrations due to fi-
ber–fiber interactions. Viscosity values for suspension of elongated
particles are higher compared to the spherical suspension which is
in agreement with previous studies on such systems. The method
presented in our work can be easily extended to flexible fibers.
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